

Pyflame: A Ptracing Profiler For Python

Pyflame is a unique profiling tool that generates flame graphs [http://www.brendangregg.com/flamegraphs.html] for Python. Pyflame is the
only Python profiler based on the Linux ptrace(2) [http://man7.org/linux/man-pages/man2/ptrace.2.html] system call. This allows
it to take snapshots of the Python call stack without explicit instrumentation,
meaning you can profile a program without modifying its source code! Pyflame is
capable of profiling embedded Python interpreters like uWSGI [https://uwsgi-docs.readthedocs.io/en/latest/]. It fully supports profiling
multi-threaded Python programs.

Pyflame is written in C++, with attention to speed and performance. Pyflame
usually introduces less overhead than the builtin profile (or cProfile)
modules, and also emits richer profiling data. The profiling overhead is low
enough that you can use it to profile live processes in production.

Contents:

	Installing Pyflame
	Build Dependencies

	Compiling

	Pre-Built Packages

	Using Pyflame
	Attaching To A Running Python Process

	Tracing Python Commands

	Timestamp (“Flame Chart”) Mode

	FAQ
	What Python Versions Are Supported?

	What Is “(idle)” Time?

	Are BSD / OS X / macOS Supported?

	What Are These Ptrace Permissions Errors?

	Contributing
	Hacking

	How Else Can I Help?

Websites

	Project homepage [http://pyflame.readthedocs.org/] (this documentation)

	Source code at Github [https://github.com/uber/pyflame]

Blog Posts

Some existing articles and blog posts on Pyflame include:

	Pyflame: Uber Engineering’s Ptracing Profiler For
Python [http://eng.uber.com/pyflame/] by Evan Klitzke (2016-09)

	Pyflame Dual Interpreter
Mode [https://eklitzke.org/pyflame-dual-interpreter-mode] by Evan
Klitzke (2016-10)

	Using Uber’s Pyflame and Logs to Tackle Scaling
Issues [https://benbernardblog.com/using-ubers-pyflame-and-logs-to-tackle-scaling-issues/]
by Benoit Bernard (2017-02)

	Building Pyflame on Centos
6 [http://blog.motitan.com/2017/04/15/python%E6%80%A7%E8%83%BD%E5%88%86%E6%9E%90%E5%B7%A5%E5%85%B7%E4%B9%8Bpyflame/]
(Chinese) by Faicker Mo (2017-04)

If you write a new post about Pyflame, please let us know and we’ll add it here!

Installing Pyflame

You have two options for installing Pyflame: you can try a pre-built package, or
you can install from source. To build from source, you will need a C++ compiler
with basic C++11 support. Pyflame is known to compile on versions of GCC as old
as GCC 4.6.

Build Dependencies

Generally you’ll need autotools, automake, libtool, pkg-config, and the Python
headers. If you have headers for both Python 2 and Python 3 installed you’ll get
a Pyflame build that can target either version of Python.

Debian/Ubuntu

Install the following packages if you are building for Debian or Ubuntu.
Note that you technically only need one of python-dev or
python3-dev, but if you have both installed then you can use Pyflame
to profile both Python 2 and Python 3 processes.

Install build dependencies on Debian or Ubuntu.
sudo apt-get install autoconf automake autotools-dev g++ pkg-config python-dev python3-dev libtool make

Fedora

Again, you technically only need one of python-devel and
python3-devel, although installing both is recommended.

Install build dependencies on Fedora.
sudo dnf install autoconf automake gcc-c++ python-devel python3-devel libtool

Compiling

Once you’ve installed the appropriate build dependencies, you can compile
Pyflame like so:

./autogen.sh
./configure # Plus any options like --prefix.
make
make check # Optional, test the build! Should take < 1 minute.
make install # Optional, install into the configure prefix.

The Pyflame executable produced by the make command will be located at
src/pyflame. Note that the make check command requires that you have the
virtualenv command installed. You can also sanity check your build with a
command like:

Or use -t python3, as appropriate.
pyflame -t python -c 'print(sum(i for i in range(100000)))'

Creating A Debian Package

If you’d like to build a Debian package, run the following from the root
of your Pyflame git checkout:

Install additional dependencies required for packaging.
sudo apt-get install debhelper dh-autoreconf dpkg-dev

This create a file named something like ../pyflame_1.3.1_amd64.deb
dpkg-buildpackage -uc -us

Pre-Built Packages

Several Pyflame users have created unofficial pre-built packages for different
distros. Uploads of these packages tend to lag the official Pyflame releases, so
you are strongly encouraged to check the pre-built version to ensure that it
is not too old. If you want the newest version of Pyflame, build from source.

Conda

Evan Klitzke [https://github.com/eklitzke] maintains a Conda package of
Pyflame:

conda install -c eklitzke pyflame

Ubuntu PPA

Trevor Joynson [https://github.com/akatrevorjay] has set up an unofficial
PPA for all current Ubuntu releases: ppa:trevorjay/pyflame [https://launchpad.net/~trevorjay/+archive/ubuntu/pyflame].

sudo apt-add-repository ppa:trevorjay/pyflame
sudo apt-get update
sudo apt-get install pyflame

Note also that you can build your own Debian package easily, using the one
provided in the debian/ directory of this project.

Arch Linux

Oleg Senin [https://github.com/RealFatCat] has added an Arch Linux package
to AUR [https://aur.archlinux.org/packages/pyflame-git/].

Using Pyflame

Pyflame has two distinct modes: you can attach to a running process, or you can
trace a command from start to finish.

Attaching To A Running Python Process

The default behavior of Pyflame is to attach to an existing Python process. The
target process is specified via its PID:

Profile PID for 1s, sampling every 1ms.
pyflame -p PID

This will print data to stdout in a format that is suitable for usage with
Brendan Gregg’s flamegraph.pl tool (which you can get here [https://github.com/brendangregg/FlameGraph]). A typical command pipeline
might be like this:

Generate flame graph for pid 12345; assumes flamegraph.pl is in your $PATH.
pyflame -p 12345 | flamegraph.pl > myprofile.svg

You can also change the sample time with -s, and the sampling frequency with
-r. Both units are measured in seconds.

Profile PID for 60 seconds, sampling every 10ms.
pyflame -s 60 -r 0.01 -p PID

The default behavior is to sample for 1 second (equivalent to -s 1), taking
a snapshot every millisecond (equivalent to -r 0.001).

Attaching To Docker/Containerized Processes

Pyflame knows how to do something interesting: it can attach to containerized
processes from outside the container. It does this by directly using the
setns(2) [http://man7.org/linux/man-pages/man2/setns.2.html] system call
(which is how Docker works under the hood).

If you choose to profile a process from outside the container, use the true PID,
as reported by ps on the host (i.e. outside of the container).

You can also run Pyflame from inside containers, although this is a bit more
annoying, since normally ptrace is disabled inside containers for security
reasons. If you attach to a process this way, you will need to use the
inside-the-container PID. You can find this by running ps inside of the
container itself.

We recommend running Pyflame from outside containers, since it means you can
keep ptrace disabled inside containers. If you want to run Pyflame inside
containers, and have problems, please make sure to read the Docker notes in the
FAQ.

Tracing Python Commands

Sometimes you want to trace a command from start to finish. An example would be
tracing the run of a test suite or batch job. Pass -t as the last
Pyflame flag to run in trace mode. Anything after the -t flag is interpreted
literally as part of the command to run:

Trace a given command until completion.
pyflame [regular pyflame options] -t command arg1 arg2...

Often command will be python or python3, but it could be something
else, like uwsgi or py.test. For instance, here’s how Pyflame can be
used to trace its own test suite:

Trace the Pyflame test suite, a.k.a. pyflameception!
pyflame -t py.test tests/

As described in the docs for attach mode, you can use -r to control the
sampling frequency.

Tracing Programs That Print To Stdout

By default, Pyflame will send flame graph data to stdout. If the profiled
program is also sending data to stdout, then flamegraph.pl will see the
output from both programs, and will get confused. To solve this, use the -o
option:

Trace a process, sending profiling information to profile.txt
pyflame -o profile.txt -t python -c 'for x in range(1000): print(x)'

Convert profile.txt to a flame graph named profile.svg
flamegraph.pl <profile.txt >profile.svg

Timestamp (“Flame Chart”) Mode

Generally we recommend using regular flame graphs, generated by
flamegraph.pl. However, Pyflame can also generate data with a special time
stamp output format, useful for generating “flame charts” [https://addyosmani.com/blog/devtools-flame-charts/] (somewhat like an
inverted flame graph) that are viewable in Chrome. In some cases, the flame
chart format is easier to understand.

To generate a flame chart, use pyflame --flamechart, and then pass the
output to utils/flame-chart-json to convert the output into the JSON format
required by the Chrome CPU profiler:

Generate flame chart data viewable in Chrome.
pyflame --flamechart [other pyflame options] | flame-chart-json > foo.cpuprofile

Read the following Chrome DevTools article [https://developers.google.com/web/updates/2016/12/devtools-javascript-cpu-profile-migration]
for instructions on loading a .cpuprofile file in Chrome 58+.

FAQ

What Python Versions Are Supported?

Python 2 is tested with Python 2.6 and 2.7. Earlier versions of Python 2 are
likely to work as well, but have not been tested.

Python 3 is tested with Python 3.4, 3.5, and 3.6. Python 3.6 introduces a new
ABI for the PyCodeObject type, so Pyflame only supports the Python 3
versions that header files were available for when Pyflame was compiled.

It’s possible for Pyflame to get confused about what Python version the target
process is when profiling an embedded Python build, such as uWSGI. If you run
into this issue, use the --abi option to force a particular Python ABI.

What Is “(idle)” Time?

In Python, only one thread can execute Python code at any one time, due to the
Global Interpreter Lock, or GIL. The exception to this rule is that threads can
execute non-Python code (such as IO, or some native libraries such as NumPy)
without the GIL.

By default Pyflame will only profile code that holds the Global Interpreter
Lock. Since this is the only thread that can run Python code, in some sense this
is a more accurate representation of the profile of an application, even when it
is multithreaded. If nothing holds the GIL (so no Python code is executing)
Pyflame will report the time as “idle”.

If you don’t want to include this time you can use the invocation pyflame
-x.

If instead you invoke Pyflame with the --threads option, Pyflame will take a
snapshot of each thread’s stack each time it samples the target process. At the
end of the invocation, the profiling data for each thread will be printed to
stdout sequentially. This gives you a more accurate profile in the sense that
you will see what each thread was trying to do, even if it wasn’t actually
scheduled to run.

Pyflame may “freeze” the target process if you use this option with older
versions of the Linux kernel. In particular, for this option to work you need
a kernel built with waitid() ptrace support [https://lwn.net/Articles/688624/]. This change was landed for Linux kernel
4.7. Most Linux distros also backported this change to older kernels, e.g. this
change was backported to the 3.16 kernel series in 3.16.37 (which is in Debian
Jessie’s kernel patches). For more extensive discussion, see issue #55 [https://github.com/uber/pyflame/issues/55].

One interesting use of this feature is to get a point-in-time snapshot of what
each thread is doing, like so:

Get a point-in-time snapshot of what each thread is currently running.
pyflame -s 0 --threads -p PID

Are BSD / OS X / macOS Supported?

Pyflame uses a few Linux-specific interfaces, so unfortunately it is the only
platform supported right now. Pull requests to add support for other platforms
are very much wanted.

Someone who is proficient with low-level C systems programming can probably get
BSD to work without too much difficulty. The necessary work to adapt the code
is described in Issue #3 [https://github.com/uber/pyflame/issues/3].

By comparison, it is probably much more work to get Pyflame working on macOS.
The current code assumes that the host uses ELF [https://en.wikipedia.org/wiki/Executable_and_Linkable_Format]
object/executable files. Apple uses a different object file format, called
Mach-O [https://en.wikipedia.org/wiki/Mach-O], so porting Pyflame to macOS
would entail doing all of the work to port Pyflame to BSD, plus additional
work to parse Mach-O object files. That said, the Mach-O format is documented
online (e.g. here [https://lowlevelbits.org/parsing-mach-o-files/]), so a
sufficiently motivated person could get macOS support working.

What Are These Ptrace Permissions Errors?

Because it’s so powerful, the ptrace(2) system call is often disabled or
severely restricted. In order to use ptrace, these conditions must be met:

	You must have the SYS_PTRACE
capability [http://man7.org/linux/man-pages/man7/capabilities.7.html]
(which is denied by default within Docker images).

	The kernel must not have kernel.yama.ptrace_scope set to a value
that is too restrictive.

In both scenarios you’ll also find that strace and gdb do not work as
expected.

Ptrace Errors Within Docker Containers

By default Docker images do not have the SYS_PTRACE capability. If you want
it enabled, invoke docker run using the --cap-add SYS_PTRACE option:

Allows processes within the Docker container to use ptrace.
docker run --cap-add SYS_PTRACE ...

You can also use capsh(1) [http://man7.org/linux/man-pages/man1/capsh.1.html] to list your current
capabilities:

You should see cap_sys_ptrace in the "Bounding set".
capsh --print

You do not need to run Pyflame from within a Docker container. If you have
sufficient permissions (i.e. you are root, or the same UID as the Docker
process) Pyflame can be run from outside a container to inspect a process inside
a container. This is better for security, since you can keep ptrace disabled in
the container.

Ptrace Errors Outside Docker Containers Or When Not Using Docker

If you’re not in a Docker container, or you’re not using Docker at all, ptrace
permissions errors are likely related to you having too restrictive a value set
for the kernel.yama.ptrace_scope sysfs knob.

Debian Jessie ships with ptrace_scope set to 1 by default, which will
prevent unprivileged users from attaching to already running processes.

To see the current value of this setting:

Prints the current value for the ptrace_scope setting.
sysctl kernel.yama.ptrace_scope

If you see a value other than 0 you may want to change it. Note that by doing
this you’ll affect the security of your system. Please read the relevant kernel
documentation [https://www.kernel.org/doc/Documentation/security/Yama.txt]
for a comprehensive discussion of the possible settings and what you’re
changing. If you want to completely disable the ptrace settings and get
“classic” permissions (i.e. root can ptrace anything, unprivileged users can
ptrace processes with the same user id) then use:

Use this if you want "classic" ptrace permissions.
sudo sysctl kernel.yama.ptrace_scope=0

Ptrace With SELinux

If you’re using SELinux, you may have problems with ptrace [https://fedoraproject.org/wiki/Features/SELinuxDenyPtrace]. To check if
ptrace is disabled:

Check if SELinux is denying ptrace.
getsebool deny_ptrace

If you’d like to enable it:

Enable ptrace under SELinux.
setsebool -P deny_ptrace 0

Contributing

We love getting pull requests and bug reports! This section outlines some ways
you can contribute to Pyflame.

Hacking

This section will explain the Pyflame code for people who are interested in
contributing source code patches.

A good way to start understanding the code is to read the two blog posts (linked
on the main docs page) written by Evan Klitzke. They cover the basics about how
Pyflame works, and have some helpful information about how the code is
organized.

The code style in Pyflame (mostly) conforms to the Google C++ Style Guide [https://google.github.io/styleguide/cppguide.html]. Additionally, all of the
source code is formatted with clang-format [http://clang.llvm.org/docs/ClangFormat.html]. There’s a .clang-format
file checked into the root of this repository which will make clang-format
do the right thing. Different clang releases may format the source code slightly
differently, as the formatting rules are updated within clang itself. Therefore
you should eyeball the changes made when formatting, especially if you have an
older version of clang.

If you are changing any of the low-level C++ bits, and end up with a broken
build, you may want to try by getting the following command working before
testing with the full test suite:

Sanity check Pyflame.
pyflame -t python -c 'print(sum(i for i in range(100000)))'

To run the full test suite locally:

Run the Pyflame test suite.
make check

If you change any of the Python files in the tests/ directory, please run
your changes through YAPF [https://github.com/google/yapf] before submitting
a pull request.

How Else Can I Help?

Patches are not the only way to contribute to Pyflame! Bug reports are very
useful as well. If you file a bug, make sure you tell us the exact version of
Python you’re using, and how to reproduce the issue.

Index

 nav.xhtml

 Table of Contents

 		Pyflame: A Ptracing Profiler For Python

 		Installing Pyflame

 		Build Dependencies

 		Debian/Ubuntu

 		Fedora

 		Compiling

 		Creating A Debian Package

 		Pre-Built Packages

 		Conda

 		Ubuntu PPA

 		Arch Linux

 		Using Pyflame

 		Attaching To A Running Python Process

 		Attaching To Docker/Containerized Processes

 		Tracing Python Commands

 		Tracing Programs That Print To Stdout

 		Timestamp (“Flame Chart”) Mode

 		FAQ

 		What Python Versions Are Supported?

 		What Is “(idle)” Time?

 		Are BSD / OS X / macOS Supported?

 		What Are These Ptrace Permissions Errors?

 		Ptrace Errors Within Docker Containers

 		Ptrace Errors Outside Docker Containers Or When Not Using Docker

 		Ptrace With SELinux

 		Contributing

 		Hacking

 		How Else Can I Help?

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

_static/up-pressed.png

_static/plus.png

_static/comment-bright.png

_static/comment.png

_static/down.png

_static/comment-close.png

_static/up.png

_static/minus.png

